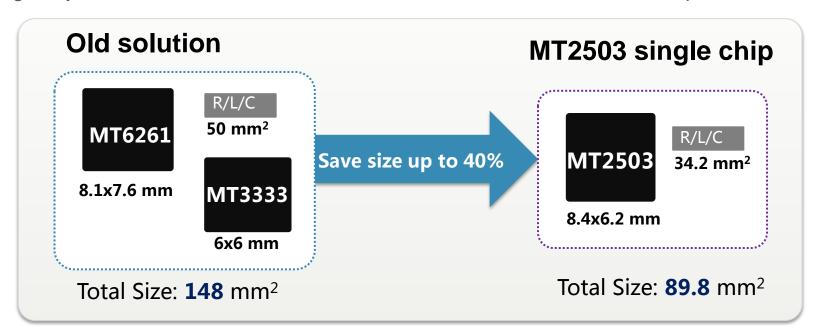
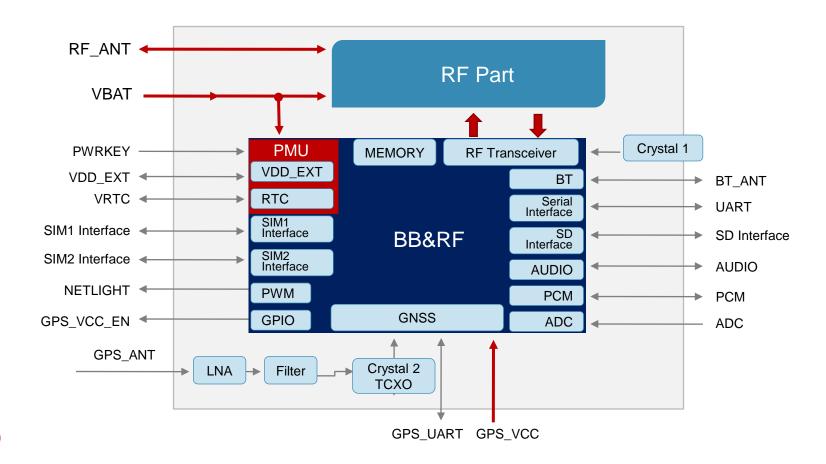


MC60 GSM/GPRS+GNSS Combo Module Presentation

July, 2016


www.quectel.com

Introduction



MC60 is a GSM/GPRS+GNSS combo module based on MT2503D platform which is the combination of GNSS platform MT3333 and GSM/GPRS platform MT6261. While offering the same performance as MT6261 and MT3333, MT2503D features greatly reduced size, and also offers more advanced features in GNSS part.

Block Diagram

Advanced Features

GNSS Features

- GPS + GLONASS
- EASYTM
- LOCUSTM
- GLP
- DGPS
- AlwaysLocateTM
- Build-in LNA
- EPOTM*
- SUPL*

Bluetooth

- BT3.0
- Profiles: SPP, HFP-AG

* Under Development

GSM/GPRS Features

- Quad-band: 850/900/1800/1900MHz
- GPRS Multi-slot Class: Class 12
- AT Commands: GSM 07.07, 07.05 and enhanced AT commands
- TCP/UDP/HTTP/FTP/PPP*
- Jamming Detection
- Audio
- QuecFOTATM
- Dual SIM Single Standby
- OpenCPU

Others

- Extended temperature range: -40 °C~+85 °C
- Support 3V/1.8V SIM/USIM cards
- Highly compact size

Specifications

GPS L1 Band Receiver (1575.42MHz)	33 tracking channels Channel 99 acquisition channel 210 PRN channels		
GLONASS	C/A code		
L1 Band Receiver (1601.71MHz)	SBAS	WAAS, EGNOS MSAS, GAGAN	
Horizontal Position Accuracy	Autonomous	<2.5m CEP	
Velocity Accuracy	Without Aid	<0.1m/s	
Acceleration Accuracy	Without Aid	0.1m/s²	
Timing Accuracy	1PPS	10ns	
TTFF@-130dBm with EASY™	Cold Start	<15s	
	Warm Start	<5s	
	Hot Start	<1s	
TTFF@-130dBm without EASY™	Cold Start	<35s	
	Warm Start	<30s	
	Hot Start	<1s	
Sensitivity	Acquisition	-149dBm	
	Tracking	-167dBm	
	Re-acquisition	-161dBm	

Quad-band	850/900/1800/1900MHz	
GPRS Multi-slot Class	Class 12	
GPRS Mobile Station	Class B	
Compliant to GSM Phase 2/2+	Class 4 (2W @850/900MHz) Class 1 (1W @1800/1900MHz)	
Supply Voltage Range	3.3~4.6V 4.0V Typ.	
Low Power Consumption	1.2mA @DRX=5	
Operation Temperature	-40°C ~ +85°C	
Dimensions	18.7 imes 15.8 imes 2.1mm	
Weight	Approx. 1.3g	
Control via AT Commands	GSM 07.07, 07.05 and other enhanced AT commands	
Speech Codec Modes	Half Rate (HR) Full Rate (FR) Enhanced Full Rate (EFR) Adaptive Multi-Rate (AMR)	
Echo Arithmetic	Echo Cancellation Echo Suppression Noise Reduction	
Bluetooth	BT 3.0 Profile: SPP, HFP	
SIM/USIM	3V/1.8V	
UART	×3	

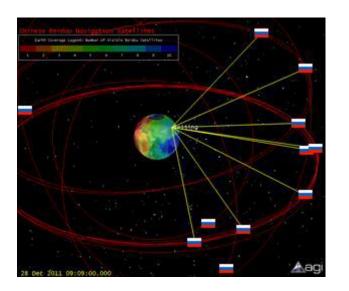
Enhanced AT Commands

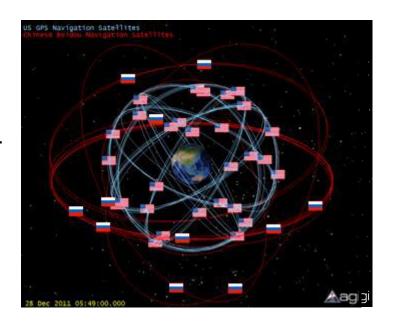
- Standard V.25ter AT commands
- GSM 07.07
- GSM 07.05 (SMS)
- GPRS AT commands in accordance with GSM 07.07
- TCP/IP stack AT commands
- STK (SIM Application Toolkit)
- Quectel defined AT commands (Enhanced Functions)

PQ Commands Based on SDK

MC60's GNSS part supports PQ commands which are developed based on SDK. The commands and corresponding functions are:

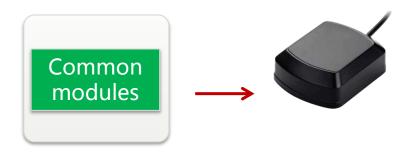
PQ Command	Description
PQBUAD	Set NMEA Port Default Baudrate
PQEPE	Enable/Disable PQEPE Sentence Output
PQECEF*	Enable/Disable ECEFPOSVEL Sentence Output
PQODO*	Start/Stop Odometer Reading
PQPZ90*	Enable/Disable Switching from WGS84 to PZ-90.11
PQVEL*	Enable/Disable 3 Ways Velocity Sentence Output

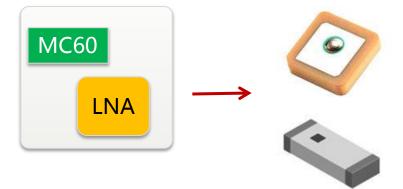

^{*} Under Development


Positioning - Multi-Constellation GNSS

MC60 supports GPS+GLONASS

- GPS: max acquisition 10 SV
- GPS+GLONASS: max acquisition 22 SV More satellites are available for position calculation, which greatly improves accuracy.



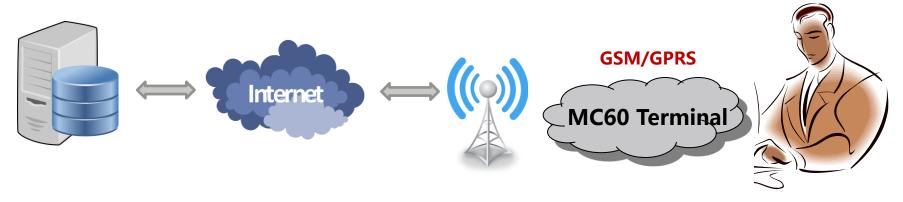

The two-constellation system is especially suitable for urban areas with high-rise buildings and complex environments.

Positioning - Build-in LNA

- Expensive active antenna
- Increased external circuits

- Low-cost ceramic/chip antenna
- No need of external circuits

Positioning - EPO (1)


EPO Function

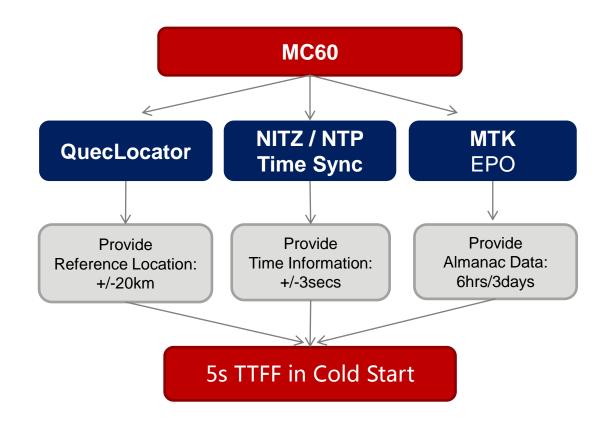
It is a kind of offline AGPS technology which provides predicted Extended Prediction Orbit to speed up TTFF.

Key Benefits:

- No need of extra server.
- EPO data downloading through GPRS network and upload to GNSS engine automatically.
- Small data size ensures short download time.

MTK EPO Server

Positioning - EPO (2)


TTFF Comparison

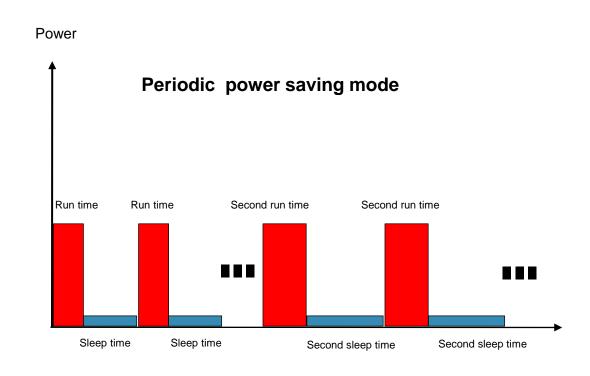
Test Cond	ition	TTFF without EPO™	TTFF with EPO™
Under real network conditions and	Cold Start	<35s	<15s
conductive power level of -130dBm	Warm Start	<30s	<5 s

Positioning - SUPL

MC60 supports SUPL, an online AGPS technology which integrates EPO data, NITZ/NTP time sync, and QuecLocator to achieve 5 seconds TTFF for Cold Start in Open Sky.

Positioning - GLP (1)

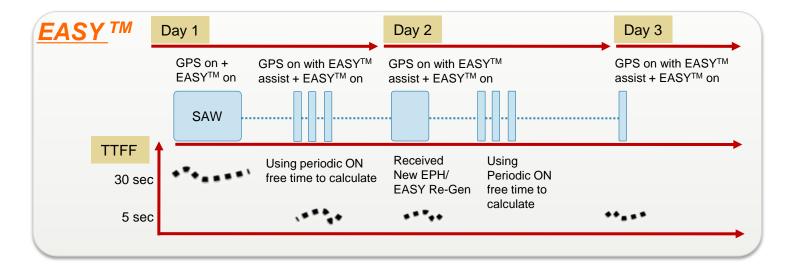
- In acquisition or tracking condition, GLP (GNSS Low Power) is the best power-saving mode.
- In GLP mode, MC60 module still outputs NMEA data at 1Hz data update rate.
- The module will automatically exit from GLP mode when positioning conditions are not satisfied.


Average Current Consumption in GLP and Normal Modes

Scenario	In GLP Mode (mA)	In Normal Mode (mA)
Static	8.9	22
Walking	11.2	22
Running	11.5	22
Driving	21.5	22

Positioning - Periodic Mode

- Periodic standby mode can control the power on/off time of MC60's GNSS part periodically to reduce average power consumption.
- The on/off time can be configured by using PMTK command. For details, please see the figure on the right.



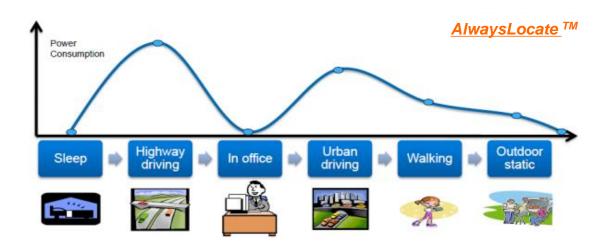
Positioning - EASYTM Technology (1)

EASY™ is the abbreviation of Embedded Assist System for quick positioning. With EASY™ technology, MC60's GNSS engine can automatically calculate and predict orbits automatically using the ephemeris data (up to 3 days) when the power is on, and then save the predict information into the memory. So the GNSS engine can use the information for positioning later if there is not enough information received from the satellites.

This function is helpful for positioning and TTFF improvement under indoor or urban conditions.

Positioning - EASYTM Technology (2)

TTFF Comparison

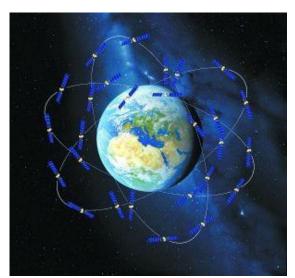


Test Cond	ition	TTFF without EASY™	TTFF with EASY™
Under GNSS signal generator, and conductive power level of -130dBm	Cold Start	<35s	<15s
	Warm Start	<30s	<5 s

Positioning - AlwaysLocate[™] Technology

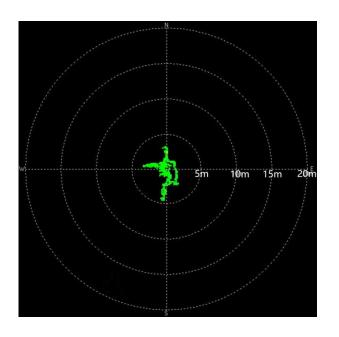
AlwaysLocate[™] is an intelligent controller of periodic mode.

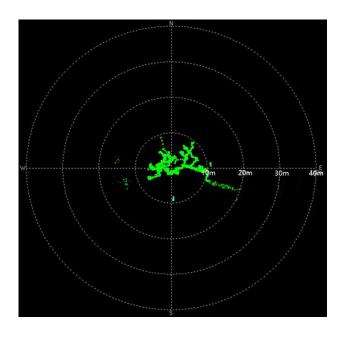
MC60'S GNSS part can adaptively adjust the on/off time to achieve balance between positioning accuracy and power consumption according to the environmental and motion conditions. So the average power consumption is lower in AlwaysLocate™ power saving mode than that in periodic power saving mode. The typical average power consumption is 2.8mA.


Positioning - LOCUS[™] Technology

LOCUS is an embedded logger function of MC60's GNSS part. When enabled by PMTK command, it allows the module to log GNSS data (data format: UTC, Latitude, Longitude, Height) to internal flash memory automatically without the need of host CPU (MCU) or external flash.

Benefits:


- Automatically log data to chipset internal flash, with the no need to wake up HOST
- Smart overlapping mechanism to keep the latest logger data (4KB base)
- Logger capability in chipset internal flash:
 - ✓ With 1 sector flash (64KB), user can log >16 hours
 - ✓ With AlwaysLocateTM, user can log up to 48hrs (2 days) under standard scenario.


Positioning – Static Filed Test

The following is a 12-hour testing result in static field.

GPS+GLONASS

Only GPS

Positioning - Estimated Position Error

- Estimated Position Error
 Large error values can be filtered
 via PQEPE command.
- Static Speed Threshold
 Threshold setting can effectively suppress static drift.

Positioning - Dynamic Field Testing

U turning

Under Viaduct

Turning

uCompany M8

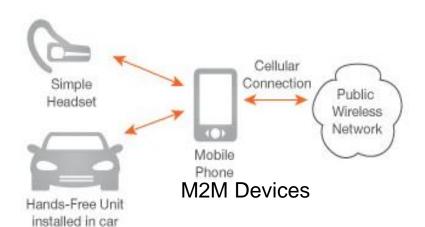
MC60

Bluetooth Function – Bluetooth Profiles

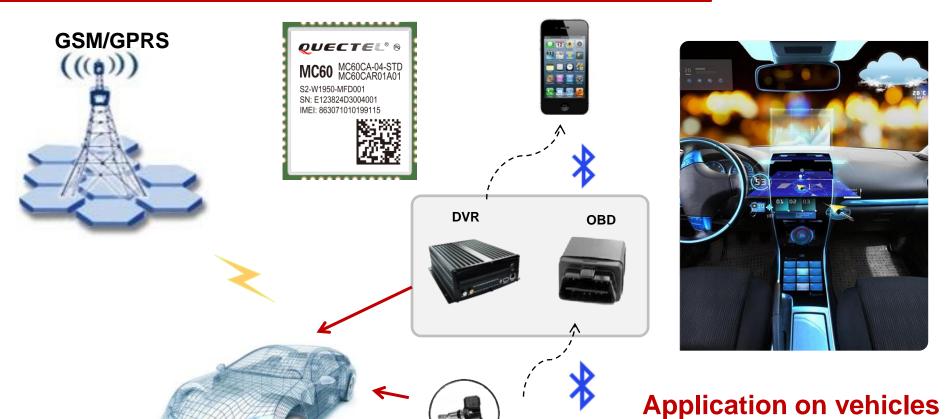
Profile: SPP

BT3.0

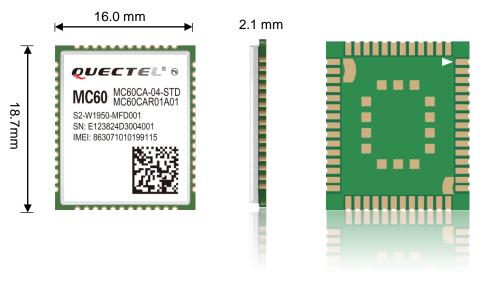
Profile: HFP+AG



Laptop or PC


Laptop or PC

Bluetooth Application



TPM

Mechanical Dimensions

Length: 18.7mm (\pm 0.15mm)

Width: 16.0mm (\pm 0.15mm)

Height: 2.1mm (\pm 0.2mm)

Weight: Approx. 1.3g

- Highly compact size
- Easier soldering process with LCC package

Target Applications

Wearable **Devices**

(e.g. watch)

Support Package (1)

Evaluation Board

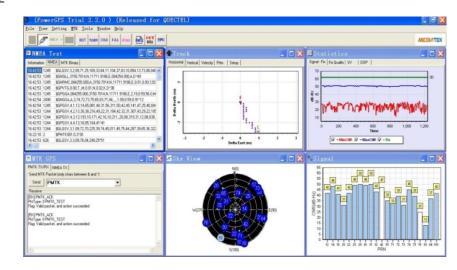
GSM-EVB Kit

- GSM EVB Board
- GSM Antenna
- Serial port cable
- RF cable for GSM Antenna connection

MC60-TE-A Kit

- MC60-TE-A
- GNSS Antenna
- RF cable for GNSS Antenna connection

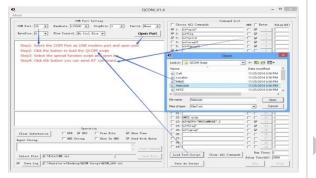
Support Package (2)



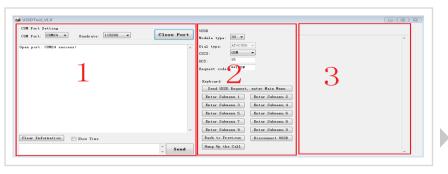
Documents

- Specification
- Hardware Design
- MC60 AT Commands
- MC60 GNSS AT Commands
- Footprint&Parts in PADS and Protel Formats
- Evaluation Board User Guide
- Reference Design

PC tool


 <u>PowerGPS - GPS/GLONASS</u> <u>testing tool</u>

Support Package (3)


PC tool: QCOM/Qnavigator/USSDTool - GSM Test Tool

QCOM

Qnavigator

USSDTool

Thank you!

July, 2016

www.quectel.com